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Abstract

This study examines the implications of artificial intelligence (AI) on employment, wages,
and inequality in Latin America and the Caribbean (LAC). The paper identifies tasks and
occupations most exposed to AI using comprehensive individual-level data alongside AI
exposure indices. Unlike traditional automation, AI exposure correlates positively with
higher education levels, ICT, and STEM skills. Notably, younger workers and women
with high-level ICT and managerial skills face increased AI exposure, underscoring unique
opportunities. A comparison of LAC with the OECD countries reveals greater impacts of
AI in the former, with physical and customer-facing tasks showing divergent correlations
to AI exposure. The findings indicate that while AI contributes to employment growth at
the top and bottom of wage quintiles, its wage impact strongly depends on the movement
of workers from the middle class to below the wage mean of the high-level quintile of
wages, hence decreasing the average income of the top quintile.
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1 Introduction
In just over two years since the release of ChatGPT, artificial intelligence (AI) has
dominated discussions about the challenges posed by AI-based automation. While
numerous studies analyze the impact of robots and routine task automation, AI presents
an even more significant challenge because it can perform not only routine tasks but also
more complex tasks requiring a degree of cognition. This leads to a rethinking of the
effects and raises the question of whether they alter the results commonly documented
by traditional automation (e.g. Acemoglu and Restrepo (2011); Frey and Osborne
(2013, 2017); Arntz et al. (2016); Acemoglu and Restrepo (2022, 2018); Nedelkoska and
Quintini (2018); Egana-delSol et al. (2022a); Filippi et al. (2023)).1

Although the adoption process of Generative AI is still in the pilot stage in several
industries, there have been many efforts to determine its impact on the market (Bryn-
jolfsson et al., 2025; Brynjolfsson and Unger, 2023). These efforts have mainly focused
on developed countries, with a few exceptions (Gmyrek et al., 2024; Benites and Par-
rado, 2024). As noted in Cazzaniga et al. (2024), unlike previous waves of automation,
which had their strongest effects on middle-skilled workers, the displacement risks as-
sociated with AI extend to higher-paid workers.2 These outcomes will depend on both
the complementarity of occupations and exposure to artificial intelligence, which differ
between advanced and emerging economies Cazzaniga et al. (2024).

This article explores the potential effects of artificial intelligence (AI) on the future of
1Prior to the advent of AI, automation has been shown to impact and exacerbate wage inequality in

the United States (Acemoglu and Restrepo, 2022). Furthermore, it has influenced the distribution of
tasks and skills in the labor market in OECD countries (Lassébie and Quintini, 2022). In this context,
higher levels of specialization and obtaining advanced degrees can help mitigate the negative impact of
automation in certain segments of the labor market (Autor, 2019). Research on developing countries,
and, particularly in Latin America, indicates that the potential impacts may be even more pronounced,
aligning with evidence suggesting that higher education and specialization can alleviate these effects
(Egana-delSol, 2020; Egana-delSol et al., 2022a).

2Consistently, Webb (2020) indicates that exposure to AI is greatest among high-skilled occupations,
suggesting that AI will affect a markedly different demographic group than those affected by software
and robots. With this, AI may have a major impact on economies by amplifying inequalities by
increasing returns to capital and with different effects for workers depending on age and educational
attainment (Acemoglu and Restrepo, 2022).
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work in developing countries, with a specific focus on Latin America and the Caribbean.
To conduct this analysis, we utilized various data sources, including the World Bank’s
Skills Towards Employment and Productivity (STEP) survey, the OECD’s Programme
for the International Assessment of Adult Competencies (PIAAC), and household or
labor surveys from multiple countries. We implemented an expectation maximization
algorithm (Ibrahim, 1990) in conjunction with AI exposure estimates from Felten et al.
(2021) and Webb (2020). This approach allowed us to identify the tasks and skills
that are most exposed to AI for each occupation and demographic group based on age,
education, and gender.

Using both Felten et al. (2021)’s and Webb (2020)’s AI exposure indices, we estimate
the degree of exposure to AI that different tasks and skills have, along with under-
standing the cross-country and demographic differences that may exist. Our results
reveal significant gender disparities, highlighting that, for example, management skills
and ICT skills exhibit notably stronger associations with AI exposure for women in
several countries compared to their male counterparts. This suggests that women in
these labor markets may encounter different or greater vulnerabilities to AI, especially
in occupations where these skills are prevalent.

Educational attainment emerges as a critical determinant in shaping AI exposure. The
coefficients for middle and high-level education are consistently positive and highly
significant across countries and genders, indicating that higher educational attainment,
contrary to some expectations, is associated with greater predicted exposure to AI.

As for the age variable, for young adults (18-25 years) and adults (25-40 years) they
point to nuanced effects of age on AI exposure, although these effects vary by country
and gender. In some cases, younger workers show lower exposure, potentially because
they are in less routine or more adaptable roles.

Our results suggest that both the highly skilled and certain demographic groups, par-
ticularly women in sectors requiring ICT and managerial skills, may face disproportion-
ately AI exposure. This interaction could point to a possible widening of inequality,
where educational attainment does not uniformly protect workers but may instead con-
centrate exposure to AI among those expected to be more resilient in more developed
economies, such as those in the OECD.

The results are consistent across both AI indices. The main differences emerge when

3



examining tasks and skills, due to the varying considerations of these skills in construct-
ing the indices. These results imply that AI could exacerbate existing socioeconomic
inequalities in Latin America more sharply than in OECD countries, where social safety
nets and labor force retraining programs could cushion similar shocks. However, the
magnitude of this effect differs: the coefficients in Latin America are substantially larger
than those observed in the OECD, implying that the protective effect of advanced edu-
cation against AI exposure may be more pronounced (or, conversely, the exposure more
acute) in Latin America. In Latin American contexts, the steeper gradients associated
with education and skill levels imply that disparities in access to high-quality education
and skills training could exacerbate existing inequalities, both within the region and
compared to more developed economies. This is related to the recent results of Bone
et al. (2025) showing that while demand for AI-related roles grew by 21%, mentions of
university education requirements for these roles declined by 15%. Their causal analysis
reveals that AI skills carry a wage premium of 23%, compared to 33% for university
degrees up to the PhD level.

Finally, we assess how expected AI exposure (as measured by the Webb (2020) and
Felten et al. (2021) methodologies) affects labor market outcomes in different quintiles of
employment and across several wage ranges. The results indicate that higher exposure
to AI by one index unit, as measured by the Webb (2020) methodology, is associated
with a statistically significant 1.29% increase in employment growth. In contrast, the
effect on wage growth is negative but not statistically significant. The results are similar
when using the Felten et al. (2021) index.3

Regarding employment, both sets of estimations show a polarization in employment
growth, with employment gains concentrated in the high and bottom quintiles of the
income distribution, accompanied by a decrease in the size of the middle-income class.

Although the income of the workers entering the top quintile is growing, it is below its
mean income; therefore, the average income is falling in the top quintile, but its size is
growing on the lower end. These findings indicate that occupations at the higher end of
the wage distribution benefit from AI exposure in terms of employment, but aggregated

3In fact, when using Felten et al. (2021)’s measure of AI exposure, the coefficient for employment
growth is 0.656 and significant at the 5% level, while the wage effect remains small and insignificant.
These findings suggest that while AI exposure appears to stimulate employment growth, the impact
on wages is less clear, suggesting a complex dynamic between technology adoption, job creation and
wage determination.
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wage dynamics may be negatively affected, even though all workers in the top quintile
might be better off.

The paper is organized as follows: In Section 2, we conduct a literature review to provide
a theoretical background. Section 3 describes our data, and Section 4 our methodology.
Section 5 presents our main results. Finally, Section 6 provides a discussion of our
results, and Section 7 offers final remarks.

2 Literature Review IA
The relationship between automation and the labor market has been the subject of
extensive research in recent years. Technological innovations, especially robotics and
artificial intelligence (AI), are transforming labor structures globally. A study by (Ace-
moglu and Restrepo, 2022) finds that between 50% and 70% of changes in the U.S.
wage structure between 1980 and 2016 can be attributed to a fall in the relative wages
of workers skilled in routine tasks, particularly in industries with high exposure to au-
tomation. In Europe, the penetration of robotics has negatively impacted both wages
and employment rates over the period 2006-2018 (Doorley et al., 2023).

This process of automation has led to a polarization in the labor market, with wage
gains concentrated mainly at the extremes of the income and skill distribution, while
workers in the middle of the distribution have seen few gains (Autor, 2015). Despite the
negative effects for certain groups, automation also has the potential to complement
some types of workers. Autor (2015) argues that while automation has displaced a
significant portion of the workforce, it has also increased productivity, leading to an
increase in labor demand, particularly in non-routine cognitive occupations.

This phenomenon can be observed in Germany, where the adoption of advanced tech-
nologies has resulted in a decrease in routine jobs and an increase in non-routine occu-
pations, both cognitive and manual (Arntz and Zierahn-Weilage, 2024). On the other
hand, less skilled workers have redirected their labor supply to the service sector, which
is less susceptible to automation due to its reliance on physical skills and interpersonal
interaction (Autor and Dorn, 2013).

In addition to this, there are certain empirical findings suggest that the implementation
of certain technologies, such as the SCC (Control and Coordination System), reduces
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corporate employment in companies located in pilot cities by about 7.7% compared to
those located in non-pilot cities (Cao et al., 2023). Furthermore, although the labor
reduction effects due to automation have been confirmed, human capital and com-
plementary technologies can improve the long-term employment trend (Camina and
Torrent-Sellens, 2020).

In this sense, although automation presents significant challenges in terms of labor
displacement, it also offers opportunities by creating new jobs and improving produc-
tivity, as observed in countries such as the United States, Japan and Germany, where
the adoption of new technologies is driven by policies that favor innovation, but do not
neglect the labor costs of adaptation for employees in low-skilled occupations (Heluo
and Fabel, 2024). These adaptation costs fall mainly on employees with low educational
attainment or professional training, thereby contributing to growing inequality in these
countries.

The polarization observed in developed countries has not been replicated in developing
economies. In these countries, automation has not led to a clear polarization phe-
nomenon, although some early signs of this pattern have been detected in nations such
as China (Maloney and Molina, 2016). However, automation tends to affect informal
workers more acutely in developing economies. In the case of Chile, Egana-delSol et al.
(2022b) found that the impact of automation on informal workers was three times
greater than on formal workers, a relevant finding for countries with high levels of
informality, where automation can exacerbate existing vulnerabilities.

However, the adoption of digital technologies, and in particular artificial intelligence, is
marked by profound inequalities that vary not only between sectors but also between
countries and demographic groups. In developed economies, access to and adoption of
AI are relatively faster, creating a competitive advantage for wealthier countries, while
developing economies face significant barriers due to insufficient digital infrastructure
(Nations, 2024). These challenges are even more evident in sectors that rely on advanced
digital skills. According to the World Bank (2024), administrative tasks, which are
highly automatable, account for a large share of the most exposed occupations in low
and middle-income countries, posing significant risks for workers with limited access to
the digital training and resources needed to adapt to technological transformation.

A crucial aspect of the impact of automation for IA is how it affects different occupations.
Cazzaniga et al. (2024) highlight that the occupations most exposed to automation
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are those involving repetitive and routine tasks, as in the case of administrative and
clerical jobs. These occupations, which account for a large proportion of the tasks
susceptible to automation, are at risk of being replaced by AI. In contrast, occupations
that require a high level of knowledge and abstraction, such as professional occupations,
tend to benefit from AI as a complementary tool that increases productivity, rather than
completely replacing workers (Berg, 2023).

Regarding gender differences, the findings are mixed. While Muro et al. (2019) suggest
that men are more exposed to the effects of automation, Egana-delSol et al. (2022a)
document that, in Latin America, women are equally exposed, with 21% of them at high
risk versus 19% of men, highlighting that women are more vulnerable in administrative
and clerical sectors. In addition, women are overrepresented in the sectors most exposed
to automation by AI, such as finance, insurance and public administration (Gmyrek
et al., 2024). Many of them are in administrative roles, making them more vulnerable
to being replaced by automation (Benites and Parrado, 2024). This gender vulnerability
is reflected in the persistent digital divide, particularly in Latin America, where women
have less access to technology compared to men. This highlights the importance of
considering gender differences when analyzing the effects of automation and AI on the
labor market.

The educational level of workers also plays a key role in their exposure to automation.
Evidence suggests that workers with tertiary education are more likely to adapt to the
changes brought about by AI, as they are better positioned to make job transitions
to occupations that are not only less automatable but also benefit from technology
(Gmyrek et al., 2024). In contrast, those without a college education face a higher risk of
displacement, due to their lack of skills and difficulty in accessing training opportunities.

Regarding the effect of AI adoption on worker productivity, there is mixed evidence.
For example, Brynjolfsson et al. (2025) provides evidence of the effect of implementing
generative AI at scale in the workplace. In particular, they find that the adoption of
a generative AI tool that provides conversational support to customer service agents
increases agent productivity by 15%, as measured by the number of customer issues they
are able to resolve per hour. Interestingly, this particular increase happens with less
experienced and less skilled customer support workers, indicating that generative AI
systems may be able to capture and disseminate the behaviors of the most productive
agents. Furthermore, they find evidence that AI assistance leads to a slight decrease in
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the quality of conversations performed by the most skilled agents.

The latter is contradicted by earlier studies, such as Bresnahan et al. (2002) or Dixon
et al. (2021) who find evidence of skill-biased technical change for earlier waves of
computer technology and robotics and others such as Taniguchi and Yamada (2022)
who, particularly in IT-focused jobs, find evidence that IT complements higher-skilled
or more educated workers. Despite this, there is much literature which, while finding no
detriment for more able workers, finds greater benefits for less able workers (Kanazawa
et al., 2022). However, it is important to note that most of the types of jobs studied
so far in AI, as opposed to previous automations, are in the customer service sector, as
this is an industry with one of the highest rates of AI adoption (Chui et al., 2021).

The debate around the productivity effects of AI does not stop there. Several studies
find that AI-assisted humans make worse decisions than humans or AI alone. In the
case of Angelova et al. (2023) for the use of AI in judging and in the case of Agrawal
et al. (2019) in medical radiology, this is shown to be true for a variety of tasks. Even
Vaccaro et al. (2024) survey over 100 experimental studies and conclude that, on average,
human-AI collaborations underperform both AI alone and the best human decision-
makers. Despite this, it is important to keep in mind the types of work analysed and the
industries that are adopting these technologies, where results may have heterogeneities.

In terms of the adoption of AI tools and their effect on productivity, this is concentrated
among larger and younger firms with relatively high productivity. So far, the evidence
is mixed on the effects of AI on productivity. Acemoglu and Restrepo (2019) find no
detectable relationship between investments in specific AI tools and firm performance,
and Babina et al. (2024) find evidence of a positive relationship between firms’ AI
investments and their subsequent growth and valuations.

While, as mentioned above, the effect on productivity and the level of complementarity
has mixed evidence, even though the introduction of generative AI may increase the
demand for lower-skilled labour within an occupation, this does not necessarily imply
that in equilibrium lower-skilled workers will benefit the most, as AI assistance could
lead to shifts in labour demand between occupations that benefit higher-skilled workers
instead Acemoglu and Restrepo (2018) . This could also happen via the creation of
new jobs that require higher skills.

Still, an interesting discussion can be had as to whether this qualification of employees is
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through degrees or through training and skills. Bone et al. (2025) find that the demand
for AI roles grew by 21% as a proportion of all publications and simultaneously mentions
of university education requirements for AI roles decreased by 15%. By doing a causal
analysis, they find that AI skills have a wage value of over 23%, higher than university
degrees up to PhD level (33%), and that in occupations with a high demand for AI
skills, the wage value is high and the reward for degrees is relatively low. Thus, it
appears that training is key to overcoming these types of gaps.

Finally, another important factor is the age of the workers. In general, older workers
may be more vulnerable to the effects of automation due to their lower capacity to
adapt to new technologies. In addition, they tend to have less flexibility to change
occupations or relocate to roles with less exposure to automation. This is especially
true for those with higher levels of education, who, being in more senior positions, face
higher expectations to adapt to new technologies (Cazzaniga et al., 2024). On the other
hand, younger workers tend to face a higher degree of automation in their jobs, but
their greater familiarity with technology allows them to adapt more easily to change.

3 Data and Descriptive Statistics
This study utilizes multiple data sources to construct a dataset capable of estimating
the exposure to AI across various skills and occupational groups in Latin America.
Specifically, we rely on two key surveys to obtain worker-level information on skills and
workplace tasks. The first source is the STEP survey conducted by the World Bank in
Colombia and Bolivia in 2012 and El Salvador in 2014. The second source is the PIAAC
survey, administered by the OECD in Chile, Ecuador, Mexico, Peru, and other OECD
countries between 2011 and 2017. Both surveys provide detailed data on occupation,
age, education, and other individual characteristics. Table ?? summarizes the sample
by country. An expansion weight is applied for estimation purposes.

We restrict the sample to workers aged 18 to 60. Using specific survey questions, we
construct ten key tasks and skills: (i) Management, (ii) Client Interaction, (iii) Self-
Organization, (iv) STEM, (v) Accounting, (vi) Readiness to Learn, (vii) ICT, (viii)
Physical Tasks, (ix) Autonomy and (inverse of) repetitive tasks, and (x) Critical Think-
ing. Details on the questions used to define each category can be found in the Appendix.

This dataset integrates skills and tasks data from the World Bank’s Survey of Skills

9



for Employment and Productivity (STEP) and the OECD’s Survey of Adult Skills (PI-
AAC). Following the methodology of Ibrahim (1990), we estimate automation risk at
the individual level, employing an expectation-maximization (EM) algorithm to itera-
tively refine duplication weights. This approach ensures a robust linkage between skills,
tasks, and the likelihood of automation exposure (Arntz et al., 2016).

3.1 Country Surveys

We derive employment and wage data from various household surveys to examine oc-
cupational growth, decline, and wage trends over time. Table 1 outlines the primary
survey sources and time frames for each country. Occupation classifications are har-
monized to the ISCO-08 two-digit level for consistency. Unfortunately, data for El
Salvador and Colombia were unavailable.

Table 1: Surveys Used

Country Survey Year 1 Year 2
Bolivia Household Survey 2011 2019
Chile CASEN 2011 2022
Ecuador National Employment, Unemployment, and Underemployment Survey 2012 2023
Mexico National Occupation and Employment Survey 2012 2023
Peru National Household Survey 2012 2022

3.2 Skills and Tasks Across Countries

Table 2 provides a country-level overview of the key skill and task indicators utilized
in the analysis. Skills such as management, client interaction, and self-organization
exhibit significant heterogeneity across Latin America compared to OECD countries.
STEM and ICT skills, in particular, tend to be less prevalent in Latin America, with
Ecuador reporting notably low STEM intensity (0.22), while Colombia demonstrates
relatively high STEM prevalence (0.62). These variations suggest differing challenges
in adapting to automation within the region.

El Salvador reports the highest levels of management skills (0.58), contrasting with
lower levels in Peru (0.43) and Mexico (0.45). Tasks requiring client interaction are
significantly more prevalent in Latin America (e.g., 0.71 in Colombia and El Salvador)
compared to OECD countries (0.26). The region’s relatively low levels of STEM skills
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Table 2: Average of Skills and Tasks by Country

Bolivia Chile Colombia Ecuador El Salvador Mexico Peru OECD
Managing skills (high) 0.52 0.48 0.52 0.49 0.58 0.45 0.43 0.44
Contact with Clients (high) 0.60 0.36 0.71 0.44 0.71 0.43 0.52 0.26
Self-organization (high) 0.58 0.52 0.60 0.53 0.65 0.48 0.47 0.47
Physical skills (high) 0.56 0.58 0.51 0.65 0.46 0.64 0.59 0.57
Autonomy and Repet. 0.56 0.76 0.45 0.67 0.78 0.78 0.62 0.78
STEM skills (high) 0.41 0.32 0.62 0.22 0.44 0.30 0.29 0.35
Accounting skills (high) 0.59 0.45 0.45 0.43 0.59 0.43 0.42 0.42
ICT skills (high) 0.71 0.47 0.65 0.36 0.62 0.41 0.37 0.47
Readiness to learn (high) 0.56 0.43 0.52 0.59 0.68 0.57 0.55 0.56
Critical thinking (high) 0.51 0.52 0.56 0.49 0.59 0.54 0.46 0.49

(e.g., 0.22 in Ecuador) highlight the need for targeted skill-building initiatives to prepare
for future technological shifts.

3.3 Employment and Wage Growth

Table 3 presents descriptive statistics on average employment and wage levels across
occupations and their changes over a decade. Bolivia shows modest employment growth,
adding about 974 workers per occupation on average, while Chile and Mexico report
substantial increases. Wages rise across all countries, with the largest absolute increase
observed in Bolivia (609) and the smallest in Chile (230).

Table 3: Average Employment and Growth

N Employment Wages
Country 2010 2020 ΔEmp. 2010 2020 ΔWage
Bolivia 38 143692.0 144666.1 974.1 846.45 1455.36 608.91
Chile 39 175003.5 233614.4 58610.9 1395.36 1624.99 229.62
Ecuador 38 89139.63 204598.5 115278.6 1042.29 1531.96 489.68
Mexico 38 930120.4 1120962.0 190841.7 1876.36 2514.15 637.79
Peru 39 433352.0 487237.9 53885.9 807.66 995.47 187.82

In Chile, the average employment increased by 33% , while in Bolivia only grew 0,68%.
Wage growth also varied, consistently Bolivia showed a notable gain of almost 72%,
while Chile experienced an increase of only 16%.
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Table 4: Levels of Employment and Wages with Percentual Change

N Employment Wages
Country 2010 2020 % Change 2010 2020 % Change
Bolivia 38 143692 144666 0.68% 846.45 1455.36 71.97%
Chile 39 175003 233614 33.46% 1395.36 1624.99 16.46%
Ecuador 38 89139 204598 129.37% 1042.29 1531.96 47.00%
Mexico 38 930120 1120962 20.53% 1876.36 2514.15 34.01%
Peru 39 433352 487237 12.44% 807.66 995.47 23.27%

4 Methodology
First, we pay particular attention to differences in AI exposure between age groups,
gender, and education levels, emphasizing the vulnerability of young women with lim-
ited education compared to older, more educated men. Although both AI exposure
measures highlight the importance of routine tasks and levels of education, gender and
age, they vary in assessing the risks of specific tasks. By comparing Latin America with
OECD countries, we identify notable disparities in skill composition and educational
attainment levels, which influence AI exposure.

Second, using occupation-specific data from various household surveys, we explore the
relationship between predicted AI exposure and changes in employment levels, wage
structures, and inequality metrics over the past decade, delving deeper into potential
adverse employment effects and wage polarization.

4.1 Measuring Artificial Intelligence Exposure

Following Felten et al. (2021) and Webb (2020), we use two distinct metrics for as-
sessing artificial intelligence exposure for individuals. Using different databases and
methods, these metrics differ conceptually in their automation or exposure susceptibil-
ity criteria. We examine how these two measures of exposure correlate with skills, task
characteristics, education, age, and gender.

The Webb (2020) methodology gauges how exposed occupations are to a particular
technology by comparing the language used in patent titles with that in job task de-
scriptions. It identifies relevant patents through keywords, extracts key verb–noun pairs
(such as “diagnose disease”), and measures their frequency. Job tasks from databases
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like O*NET are processed similarly, and each extracted pair is weighted by its impor-
tance within that occupation. By averaging these weights, an overall exposure score for
each occupation is produced. Additionally, similar nouns are grouped using WordNet
to account for varying levels of specificity, ensuring a consistent measure of technology’s
relative impact across different jobs.

The AI exposure score for an occupation is calculated by first determining the relative
frequency of each aggregated verb–noun pair in patent titles for a given technology, then
assigning these scores to the corresponding pairs from the occupation’s task descriptions,
and finally taking a weighted average across all tasks—where each task’s weight is
based on its frequency, importance, and relevance—to express the intensity of patenting
activity directed toward that occupation’s tasks.

On the other hand, Felten et al. (2021) method leverages two independent databases to
assess the AI exposure to skills and occupations. It begins with the EFF AI Progress
Measurement dataset, which tracks progress across various AI categories—such as image
recognition and abstract strategy games—by aggregating and scaling multiple perfor-
mance metrics sourced from academic literature, blogs, and specialized websites. In
addition to this, the O*NET database offers up-to-date detailed skill content of occu-
pations for nearly 1,000 jobs in the US labor market, highlighting 52 distinct abilities
that describe the requirements of each role.

By constructing a mapping matrix—with input from computer science PhD students—
the method aligns the AI categories from the EFF dataset to the corresponding O*NET
abilities. It then quantifies the influence of AI on each ability, weighting this impact
by its prevalence and importance within each occupation. These weighted impacts are
aggregated to produce an overall effect score for each job. Although the score’s absolute
value is arbitrary, it provides a valuable tool for comparing the relative exposure of
different occupations to AI-driven technological advances.

For each metric, we calculate the probability of AI exposure for workers in our dataset.
We align these estimates with occupation data using a crosswalk that matches 6-digit
Standard Occupational Classification (SOC) codes with 3-digit International Standard
Classification of Occupations (ISCO) codes, based on the PIAAC and STEP surveys.

To estimate individual-level AI exposure, we model it as follows: (𝑟𝑖𝑗𝑜) for worker 𝑖, in
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country 𝑗 and occupation 𝑜 using the equation:

𝑟𝑖𝑗𝑜 =
𝑁

∑
𝑛=1

𝛽𝑛𝑋𝑖𝑗𝑜 + 𝜇𝑖𝑗𝑜,

where 𝑋𝑖𝑗𝑜 represents worker characteristics, including skills, education, gender, and
age, while 𝛽𝑛 measures the impact of these factors on AI exposure. For workers linked
to multiple risk measures, we apply weights based on the inverse number of matches,
following the approach by Arntz et al. (2016).

4.2 Occupational Aggregation

In order to merge our estimates with the country surveys, the predicted AI exposure
indices are aggregated at the ISCO-08 two-digit level for each country:

𝐴𝐼 − 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑜𝑗 = 1
𝑁𝑖𝑗𝑜

∑
𝑖∈𝑖,𝑗,𝑜

̂𝑟𝑖𝑗𝑜,

where 𝑗 represents the country, and 𝐴𝐼 − 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑜𝑗 reflects the average automation
risk for each occupation.

4.3 Linking Risk to Employment and Wages

We relate average occupational automation risks to employment and wage changes
derived from household surveys. The regression model used is:

Δ ln(𝑦𝑜𝑗) = 𝛽1𝐴𝐼 − 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑜𝑗 + 𝛾𝑗 + 𝜀𝑜𝑗,

where Δ ln(𝑦𝑜𝑗) represents changes in total employment or mean wages for occupation
𝑜 in the country 𝑗. Country-specific fixed effects (𝛾𝑗) and clustered standard errors are
included.
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5 Marginal Effects on AI Exposure

5.1 Felten

Before presenting the detailed estimates for individual countries, Tables 5 and Table
6 summarizes the marginal effects of skills and tasks on AI exposure in five Latin
American countries. The coefficients highlight how cognitive skills, physical skills, and
various non-cognitive skills interact with AI exposure differently for males and females,
emphasizing disparities tied to gender and education levels.

The results using Felten et al. (2021)’s methodology reveal distinct patterns in AI
exposure based on gender, education, and age. The empirical evidence presented in
Table 5 reveals pronounced heterogeneity in the marginal effects of various skills and
tasks on the predicted exposure to artificial intelligence across five Latin American
countries. The results underscore significant gender disparities, highlighting that, for
example, managing skills and ICT skills exhibit notably stronger associations with AI
exposure for females in several countries compared to their male counterparts. This
suggests that women in these labor markets may encounter different or heightened
vulnerabilities to AI, especially in occupations where such skills are prevalent.

Education level emerges as a critical determinant in shaping exposure to AI. The coef-
ficients for medium-level and high-level education are consistently positive and highly
significant across all countries and genders, indicating that higher educational attain-
ment, contrary to some expectations, is associated with greater predicted exposure to
AI. This pattern may reflect the nature of high-skilled jobs in these economies, which,
despite their complexity, often involve routinizable tasks that are amenable to automa-
tion. Age-related dynamics also surface from the analysis. The variables for young
adults (18-25 years) and adults (25-40 years) hint at nuanced age effects on AI expo-
sure, though these effects vary by country and gender. In some cases, younger workers
show lower exposure, potentially due to engagement in less routinized or more adaptable
roles. However, inconsistencies across countries suggest that age-related vulnerabilities
are complex and intersect with other factors like skill sets and industry sectors.

Inequality in exposure to AI is evident as these demographic factors—gender, educa-
tion level, and age—intersect. The data implies that both high-skilled individuals and
certain demographic groups, particularly women in sectors requiring ICT and manage-
rial skills, may face disproportionately high risks of automation. This interplay signals
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a potential widening of inequality, where educational attainment does not uniformly
shield workers but may instead concentrate AI exposure among those expected to be
most resilient in more developed economies, such as the OECD.

Table 5: Marginal Effects of Skills and Tasks on Exposure to Artificial Intelligence -
Felten (1)

Bolivia Chile Colombia Ecuador El Salvador
Males Females Males Females Males Females Males Females Males Females
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Managing skills (high) 0.050*** 0.084*** 0.030 0.059** 0.052*** 0.102*** 0.053*** 0.040** 0.070*** 0.019*
(0.012) (0.013) (0.016) (0.018) (0.014) (0.015) (0.013) (0.013) (0.008) (0.010)

Contact with Clients (high) 0.046*** 0.026 0.080*** 0.068*** 0.042** 0.072*** 0.029* 0.036** 0.003** 0.006***
(0.011) (0.013) (0.014) (0.019) (0.013) (0.014) (0.013) (0.013) (0.001) (0.001)

Self-organization (high) 0.003 -0.010 0.005 -0.025 -0.002 0.028* -0.010 -0.010 -0.017 -0.051***
(0.012) (0.016) (0.015) (0.016) (0.011) (0.012) (0.015) (0.016) (0.011) (0.010)

Physical skills (high) -0.091*** -0.042*** -0.103*** -0.071*** -0.093*** -0.045*** -0.042*** -0.050*** -0.048*** -0.016*
(0.012) (0.011) (0.013) (0.015) (0.010) (0.011) (0.012) (0.011) (0.006) (0.007)

Autonomy and Repet. 0.003 0.030* 0.020 0.016 0.007 -0.027* 0.005 -0.015 -0.019 0.004
(0.011) (0.014) (0.017) (0.021) (0.010) (0.012) (0.015) (0.017) (0.012) (0.012)

STEM skills (high) 0.035** 0.011 0.055*** 0.057** 0.007 0.017 0.057*** 0.100*** 0.000 0.006
(0.012) (0.013) (0.015) (0.021) (0.011) (0.012) (0.015) (0.018) (0.007) (0.007)

Accounting skills (high) 0.007 0.030** 0.035* 0.092*** 0.018 0.021 0.046*** 0.044** 0.045*** 0.073***
(0.011) (0.011) (0.015) (0.021) (0.010) (0.012) (0.013) (0.013) (0.007) (0.007)

ICT skills (high) -0.009 0.043*** 0.079*** 0.100*** 0.049*** 0.031** 0.022 0.096*** 0.023** 0.065***
(0.013) (0.012) (0.016) (0.017) (0.012) (0.011) (0.013) (0.016) (0.007) (0.008)

Readiness to learn (high) -0.010 0.033** -0.013 0.008 0.014 -0.006 -0.020 0.021 -0.005 0.034***
(0.011) (0.011) (0.015) (0.016) (0.010) (0.011) (0.015) (0.013) (0.007) (0.008)

Critical thinking tasks (high) 0.011 0.035** 0.020 0.054** -0.003 0.027** 0.015 -0.004 0.017* 0.004
(0.010) (0.012) (0.016) (0.017) (0.011) (0.010) (0.014) (0.013) (0.007) (0.008)

Medium-level education 0.040*** 0.034** 0.026 0.017 0.044*** 0.001 0.046*** 0.015 0.065*** 0.088***
(0.011) (0.012) (0.016) (0.019) (0.011) (0.012) (0.012) (0.013) (0.008) (0.008)

High-level education 0.269*** 0.193*** 0.181*** 0.141*** 0.192*** 0.185*** 0.166*** 0.155*** 0.263*** 0.226***
(0.019) (0.018) (0.020) (0.022) (0.020) (0.019) (0.018) (0.017) (0.011) (0.011)

Young adults (18-25 years) -0.022 -0.008 -0.071*** -0.023 -0.037* 0.061*** -0.075*** 0.002 0.052*** 0.005
(0.016) (0.017) (0.017) (0.019) (0.014) (0.017) (0.015) (0.017) (0.009) (0.010)

Adults (25-40 years) 0.020 -0.008 -0.023 -0.007 -0.009 0.055*** -0.014 -0.016 0.011 -0.011
(0.012) (0.013) (0.014) (0.017) (0.011) (0.011) (0.012) (0.012) (0.007) (0.007)

N 5100 4170 3007 2446 5485 3940 3058 2141 10876 8108

Cognitive skills 0.023 0.116 0.157 0.258 0.089 0.063 0.105 0.261 0.063 0.178
[0.231] [0.000] [0.000] [0.000] [0.000] [0.004] [0.000] [0.000] [0.000] [0.000]

Non-Cognitive skills 0.011 0.088 0.033 0.047 0.007 0.131 0.035 0.000 -0.010 -0.038
[0.577] [0.000] [0.212] [0.127] [0.716] [0.000] [0.113] [0.999] [0.466] [0.005]

Robust standard errors are shown in parentheses. The coefficients are estimated using an expectation-maximization algorithm. We regress the exposure to
AI, as defined by Felten, on skills, task measures, and other observable characteristics, creating a predicted value of exposure to AI at the individual level. A
generalized linear model is used, weighted by the product of individual weights from the STEP and PIAAC surveys and a duplication weight, which accounts
for multiple risks associated with the same worker. The expectation-maximization algorithm proposed by Ibrahim (1990) is then applied. This algorithm
adjusts the duplication weights iteratively to maximize the likelihood of automation risk until the weights converge. The table presents the cumulative effects of
cognitive skills (STEM, accounting, ICT, and readiness-to-learn measures) and non-cognitive skills (management, client interaction, self-organization, physical
skills, and autonomy in repetitive tasks). P-values are displayed in square brackets. * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001.

The results in both tables suggest notable gender disparities in how skills and tasks in-
fluence AI exposure. For instance, managerial skills exhibit a stronger positive marginal
effect for females compared to males across all countries. This pattern is particularly
pronounced in the Latin American context: the effect of high managing skills on AI ex-
posure is almost double for females (0.084***) compared to males (0.041***), signaling
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that women in these regions may experience heightened exposure when possessing high
managerial competencies. Similarly, client interaction skills consistently heighten AI ex-
posure, with more substantial impacts observed for females. These gendered responses
may reflect occupational roles where women engage more intensively in client-facing
tasks, potentially increasing their susceptibility to AI advancements.

Educational attainment plays a critical role in shaping AI exposure. Both medium-
and high-level education are associated with increased exposure across all countries
studied. High-level education, in particular, produces large and statistically significant
marginal effects for both genders in Mexico, Peru, OECD countries, and across the
broader Latin American sample. The magnitude of these effects suggests that higher
educational attainment correlates with roles more likely to encounter AI technologies.
However, while the positive coefficients generally reflect increased AI exposure due to
advanced skills and knowledge, they may also indicate a protective buffer against the
negative employment consequences of automation, underscoring a nuanced relationship
between education and inequality.

Age differentials reveal additional layers of inequality. For younger adults (18–25 years),
the marginal effects on AI exposure are predominantly negative for both genders in Mex-
ico and Peru, indicating lower exposure relative to older cohorts. Such a trend may
hint at younger workers being in early career stages with less integration of AI-intensive
tasks or facing barriers to entering AI-augmented sectors. In contrast, the coefficients
for adults aged 25–40 years also lean negative but with diminished magnitude, suggest-
ing a transition period where increasing experience mitigates some of the lower exposure
found among the youngest workers.

Comparative analysis between Latin America and OECD countries indicates that skill
impacts on AI exposure vary by geography and gender. While both groups show similar
directions in marginal effects for skills such as ICT and accounting, Latin American fe-
males often experience higher coefficients than their male counterparts and their OECD
peers. This divergence underscores regional disparities and hints at potential structural
differences in labor markets, technological adoption, and gendered occupational segmen-
tation. Furthermore, the aggregation of results in the LAC sample consistently mirrors
these patterns, with gender gaps and education levels playing significant roles in shaping
AI exposure.
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5.2 Webb AI

The results presented in Table 7 offer a detailed examination of how various skills and
tasks influence an individual’s exposure to artificial intelligence (AI) risk across several
Latin American countries using Webb (2020)’s exposure index to AI.

First, the gender-specific coefficients reveal noteworthy disparities between males and
females. For example, managing skills and STEM skills generally increase AI exposure
for both genders, but the magnitude and significance often differ by gender and country.
In Bolivia, high-level managing skills significantly raise AI exposure for males compared
to a smaller and statistically insignificant effect for females. Conversely, STEM skills
exhibit a robust positive impact for both genders across most countries, with coefficients
frequently significant at the 1% level. These gender-differentiated patterns highlight
how men and women may face distinct AI risks based on occupational tasks and skills
distribution, a nuance that is sometimes less pronounced in OECD contexts where
gender disparities in technology exposure follow different trends due to varying labor
market structures and educational attainment levels.

Education emerges as another critical factor shaping AI exposure. The table indicates
that both medium- and high-level education are associated with increased exposure to
AI across all examined countries and genders. Notably, high-level education coefficients
are uniformly positive and highly significant, suggesting that advanced education corre-
lates with greater AI exposure. This finding contrasts with some OECD evidence where
higher education often mitigates risk due to increased adaptability and complex task
requirements. However, in Latin America, the positive association may reflect a concen-
tration of AI-related tasks in high-skilled occupations, or it may signal that even highly
educated workers are not immune to automation pressures, potentially exacerbating
educational inequalities.

Age-related effects are also evident. The coefficients for young adults (aged 18–25)
and adults (25–40) vary across countries and genders. For instance, in Chile, young
male adults exhibit a significant negative association with AI exposure, while young
females in Colombia face a marked decrease in exposure. These patterns suggest that
younger workers, particularly women in some contexts, might be less exposed to AI
due to lower representation in highly automatable tasks or sectors. Nevertheless, the
differential impact by age could contribute to intergenerational inequality, where certain
age cohorts bear a disproportionate burden of AI risk, a dynamic that may differ from
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OECD experiences due to diverse labor market entry conditions and youth employment
structures.

Inequality surfaces as a recurrent theme, not only across gender and education levels
but also in how these factors interact with AI exposure. The varying magnitude and
significance of coefficients across different skill sets and demographic groups underscore
a stratified risk landscape. This stratification implies that AI could exacerbate existing
socioeconomic inequalities in Latin America more acutely than in OECD countries,
where social safety nets and workforce reskilling programs might buffer similar shocks.

Table 8 presents the marginal effects of various skills and tasks on predicted exposure to
artificial intelligence, as estimated using Webb (2020)’s methodology to a second group
of countries and presents also LAC and OECD estimates. The analysis disaggregates
results by gender across several regions—Mexico, Peru, the OECD, and the broader
Latin American and Caribbean (LAC) sample—to shed light on how gender, education
level, and age intersect with AI exposure and inequality. The findings reveal nuanced
differences between Latin American economies and the OECD, highlighting disparities
in skill returns, educational protection, and demographic vulnerabilities in the face of
AI-driven change.

First, the gender dimension is pronounced. For instance, managing skills tend to in-
crease AI exposure for males in both Mexico and Peru, whereas the effect for females
is smaller and not statistically significant. This suggests that, in Latin America, male-
dominated roles involving high-level management may be more susceptible to AI au-
tomation compared to similar roles held by women. In contrast, OECD data indicate
a more balanced effect across genders, with both male and female workers experienc-
ing increases in AI exposure linked to managerial competencies, though the impact is
generally higher for females. Such differences point to varying occupational structures
and gender distributions of tasks between regions.

Education plays a critical role in mediating AI risk. High-level education is associated
with a substantial increase in predicted AI exposure across all regions and both gen-
ders, reflecting that higher educational attainment often aligns with more complex tasks
that may be amenable to AI substitution. However, the magnitude of this effect differs:
Latin American coefficients are typically larger than those observed in the OECD, im-
plying that the protective effect of advanced education against AI risks may be more
pronounced—or conversely, the exposure more acute—in Latin America. Medium-level
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education, on the other hand, shows mixed effects; it appears to reduce AI exposure
for some female cohorts in Peru but exhibits less consistent patterns elsewhere, under-
scoring the nuanced role of mid-skill jobs in automation risk.

Age-related patterns also emerge. Young adults (18–25 years) in Latin America, es-
pecially males in Mexico and Peru, exhibit a negative association with AI exposure,
suggesting that younger workers might be engaged in roles that are less vulnerable
to immediate automation. The effect is less pronounced for young females, pointing
towards potential gender disparities in the opportunities available to younger cohorts.
Meanwhile, the impact on adults aged 25–40 is generally smaller and less significant,
indicating that early career stages are a critical period for differential AI exposure risks.

These heterogeneous effects across gender, education, and age illustrate deepening in-
equalities. STEM and ICT skills uniformly decrease AI exposure across regions and
genders, yet the distribution of these skills is uneven, contributing to wage and employ-
ment polarization. The disparities between Latin America and the OECD suggest that
while advanced skills and education act as protective factors everywhere, the relative
benefits and risks vary substantially. In Latin American contexts, the steeper gradients
associated with education and skill levels imply that disparities in access to high-quality
education and technical training could exacerbate existing inequalities, both within the
region and in comparison to more developed economies.

5.3 Top Occupations by AI exposure and total employment
affected

We identify a diverse range of occupations at high risk of AI-driven automation across
Latin America and the Caribbean (LAC). For instance, in Mexico, the top five occu-
pations most exposed to AI automation include science and engineering professionals,
health professionals, teaching professionals, public servants, and ICT professionals. Ad-
ditionally, when examining occupations with the largest number of workers at high
exposure to AI, the analysis reveals some heterogeneity. For instance, the top five
occupations in Mexico are sales workers, plant operators, cleaners and helpers, food
processing workers, and those in mining, construction, and manufacturing. This sug-
gests that AI-driven automation presents risks across both high-skilled and traditionally
low-skilled occupations, underscoring the need for targeted policies to mitigate labor
market disruptions and inequalities.
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The findings presented in Figures 1 through 5 indicate a consistent trend across Latin
American and Caribbean (LAC) countries. This trend reveals a shift in automation
risk toward high-skilled professions, which contrasts with the traditional focus of pre-AI
automation literature on routine, lower-skilled jobs (e.g., Egana-delSol et al. (2022a)).
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Table 6: Marginal Effects of Skills and Tasks on Exposure to Artificial Intelligence -
Felten (2)

Mexico Peru OCDE LAC sample
Males Females Males Females Males Females Males Females
(1) (2) (3) (4) (5) (6) (7) (8)

Managing skills (high) 0.033** 0.049*** 0.029** 0.049*** 0.034*** 0.035*** 0.041*** 0.084***
(0.011) (0.014) (0.010) (0.011) (0.004) (0.004) (0.008) (0.008)

Contact with Clients (high) 0.046*** 0.061*** 0.052*** 0.092*** 0.034*** 0.022*** 0.008** 0.011***
(0.010) (0.013) (0.009) (0.011) (0.005) (0.005) (0.003) (0.002)

Self-organization (high) 0.012 -0.021 0.011 -0.026* 0.017*** 0.002 -0.006 -0.026**
(0.011) (0.014) (0.011) (0.012) (0.004) (0.004) (0.007) (0.008)

Physical skills (high) -0.073*** -0.056*** -0.101*** -0.072*** -0.161*** -0.132*** -0.082*** -0.052***
(0.010) (0.012) (0.008) (0.009) (0.004) (0.004) (0.007) (0.007)

Autonomy and Repet. -0.012 0.027 0.000 0.010 0.004 0.012* 0.011 0.016
(0.012) (0.016) (0.011) (0.012) (0.005) (0.005) (0.007) (0.008)

STEM skills (high) 0.013 0.069*** 0.033** 0.068*** 0.023*** 0.058*** 0.003 0.045***
(0.011) (0.015) (0.010) (0.011) (0.004) (0.005) (0.007) (0.009)

Accounting skills (high) 0.063*** 0.068*** 0.045*** 0.046*** 0.037*** 0.050*** 0.068*** 0.061***
(0.011) (0.014) (0.010) (0.010) (0.004) (0.005) (0.008) (0.007)

ICT skills (high) 0.073*** 0.065*** 0.089*** 0.084*** 0.097*** 0.112*** 0.082*** 0.057***
(0.011) (0.013) (0.010) (0.011) (0.005) (0.005) (0.008) (0.008)

Readiness to learn (high) -0.012 0.003 0.005 0.010 0.008 -0.001 -0.005 -0.006
(0.011) (0.013) (0.009) (0.010) (0.004) (0.004) (0.007) (0.007)

Critical thinking tasks (high) 0.000 0.008 0.010 -0.002 -0.003 0.011* 0.006 0.009
(0.010) (0.013) (0.010) (0.011) (0.004) (0.004) (0.007) (0.008)

Medium-level education 0.065*** 0.077*** 0.048*** -0.007 0.010* 0.053*** 0.047*** 0.008
(0.010) (0.014) (0.011) (0.012) (0.004) (0.006) (0.007) (0.008)

High-level education 0.225*** 0.200*** 0.142*** 0.103*** 0.099*** 0.125*** 0.189*** 0.177***
(0.017) (0.019) (0.014) (0.014) (0.005) (0.007) (0.011) (0.011)

Young adults (18-25 years) -0.074*** -0.047** -0.056*** -0.023 -0.001 -0.012* -0.061*** 0.003
(0.012) (0.017) (0.012) (0.014) (0.005) (0.006) (0.008) (0.010)

Adults (25-40 years) -0.033** -0.027* -0.036*** -0.010 -0.019*** 0.001 -0.028*** 0.006
(0.011) (0.012) (0.009) (0.010) (0.004) (0.004) (0.008) (0.007)

N 3885 2312 5166 3433 58725 41590 36577 26550

Cognitive skills 0.137 0.205 0.173 0.209 0.164 0.218 0.148 0.157
[0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Non-Cognitive skills 0.007 0.061 -0.009 0.053 -0.072 -0.061 -0.028 0.032
[0.734] [0.010] [0.614] [0.002] [0.000] [0.000] [0.020] [0.018]

Robust standard errors are shown in parentheses. The coefficients are estimated using an expectation-maximization algorithm. We
regress the exposure to AI, as defined by Felten, on skills, task measures, and other observable characteristics, creating a predicted
value of exposure to AI at the individual level. A generalized linear model is used, weighted by the product of individual weights
from the STEP and PIAAC surveys and a duplication weight, which accounts for multiple risks associated with the same worker. The
expectation-maximization algorithm proposed by Ibrahim (1990) is then applied. This algorithm adjusts the duplication weights iteratively
to maximize the likelihood of automation risk until the weights converge. The table presents the cumulative effects of cognitive skills
(STEM, accounting, ICT, and readiness-to-learn measures) and non-cognitive skills (management, client interaction, self-organization,
physical skills, and autonomy in repetitive tasks). P-values are displayed in square brackets. * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001.

22



Table 7: Marginal Effects of Skills and Tasks on Exposure to Artificial Intelligence -
Webb (1)

Bolivia Chile Colombia Ecuador El Salvador
Males Females Males Females Males Females Males Females Males Females
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Managing skills (high) 0.054** 0.026 0.029 0.055* 0.030 -0.047* 0.045** 0.029 0.002 0.043***
(0.019) (0.016) (0.022) (0.027) (0.021) (0.022) (0.017) (0.019) (0.010) (0.011)

Contact with Clients (high) -0.051** -0.016 -0.044* 0.036 -0.083*** -0.005 -0.082*** 0.007 -0.002 -0.006***
(0.016) (0.014) (0.019) (0.027) (0.021) (0.020) (0.016) (0.019) (0.001) (0.002)

Self-organization (high) 0.009 -0.030 -0.006 -0.023 0.020 -0.050* -0.005 0.021 0.006 -0.033*
(0.015) (0.015) (0.019) (0.026) (0.017) (0.021) (0.022) (0.023) (0.013) (0.013)

Physical skills (high) -0.011 -0.022 0.001 -0.065** 0.024 -0.000 0.003 -0.018 -0.009 0.004
(0.014) (0.012) (0.018) (0.023) (0.016) (0.016) (0.016) (0.016) (0.008) (0.008)

Autonomy and Repet.) 0.053*** -0.015 0.035 0.015 -0.015 0.032 0.014 -0.066** 0.013 -0.007
(0.015) (0.015) (0.023) (0.033) (0.017) (0.019) (0.022) (0.026) (0.015) (0.015)

STEM skills (high) 0.049*** 0.043** 0.071*** 0.035 0.078*** 0.047** 0.074*** 0.002 0.023* 0.045***
(0.015) (0.015) (0.022) (0.027) (0.017) (0.015) (0.020) (0.022) (0.010) (0.009)

Accounting skills (high) -0.061*** 0.002 -0.032 -0.012 -0.032 -0.001 -0.015 0.006 -0.032*** -0.033***
(0.015) (0.013) (0.019) (0.026) (0.017) (0.015) (0.018) (0.019) (0.009) (0.008)

ICT skills (high) 0.018 0.037** 0.083*** 0.079** 0.039* -0.029 -0.015 0.058** -0.015 0.002
(0.016) (0.013) (0.022) (0.024) (0.019) (0.016) (0.018) (0.021) (0.009) (0.009)

Readiness to learn (high) -0.001 0.012 0.005 -0.011 -0.003 0.022 -0.028 -0.003 0.017* -0.006
(0.014) (0.013) (0.020) (0.025) (0.016) (0.016) (0.018) (0.020) (0.009) (0.009)

Critical thinking tasks (high) 0.013 -0.001 0.013 0.057* 0.030 0.057*** 0.029 0.012 0.007 0.030***
(0.014) (0.014) (0.022) (0.026) (0.018) (0.015) (0.018) (0.020) (0.008) (0.009)

Medium-level education 0.034 0.065*** 0.044* 0.044 -0.032 0.039* -0.004 0.063** 0.030** 0.010
(0.018) (0.014) (0.020) (0.029) (0.021) (0.020) (0.016) (0.021) (0.010) (0.009)

High-level education 0.144*** 0.191*** 0.077** 0.164*** 0.042 0.190*** 0.061** 0.166*** 0.175*** 0.197***
(0.023) (0.019) (0.027) (0.031) (0.031) (0.034) (0.023) (0.024) (0.014) (0.013)

Young adults (18-25 years) 0.014 -0.027 -0.070** -0.017 -0.008 -0.112*** -0.032 -0.030 -0.010 -0.007
(0.024) (0.019) (0.024) (0.033) (0.021) (0.022) (0.021) (0.026) (0.011) (0.012)

Adults (25-40 years) 0.030* -0.006 -0.008 -0.034 -0.000 -0.010 0.031 0.013 -0.009 -0.019*
(0.015) (0.013) (0.020) (0.023) (0.018) (0.017) (0.017) (0.017) (0.009) (0.009)

N 5092 4165 3006 2445 5485 3940 3058 2141 10871 8106

Cognitive skills 0.005 0.093 0.127 0.092 0.081 0.039 0.017 0.062 -0.007 0.008
[0.854] [0.000] [0.000] [0.043] [0.005] [0.191] [0.541] [0.061] [0.636] [0.573]

Non-Cognitive skills 0.055 -0.057 0.015 0.018 -0.024 -0.070 -0.025 -0.028 0.010 0.001
[0.036] [0.029] [0.687] [0.666] [0.461] [0.039] [0.357] [0.343] [0.550] [0.953]

Robust standard errors are shown in parentheses. The coefficients are estimated using an expectation-maximization algorithm. We regress the exposure to
AI, as defined by Webb, on skills, task measures, and other observable characteristics, creating a predicted value of exposure to AI at the individual level. A
generalized linear model is used, weighted by the product of individual weights from the STEP and PIAAC surveys and a duplication weight, which accounts
for multiple risks associated with the same worker. The expectation-maximization algorithm proposed by Ibrahim (1990) is then applied. This algorithm
adjusts the duplication weights iteratively to maximize the likelihood of automation risk until the weights converge. The table presents the cumulative effects of
cognitive skills (STEM, accounting, ICT, and readiness-to-learn measures) and non-cognitive skills (management, client interaction, self-organization, physical
skills, and autonomy in repetitive tasks). P-values are displayed in square brackets. * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001.
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Table 8: Marginal Effects of Skills and Tasks on Exposure to Artificial Intelligence -
Webb (2)

Mexico Peru OCDE LAC sample
Males Females Males Females Males Females Males Females
(1) (2) (3) (4) (5) (6) (7) (8)

Managing skills (high) 0.029* 0.023 0.049*** 0.008 0.013* 0.048*** 0.018 -0.004
(0.014) (0.017) (0.013) (0.016) (0.005) (0.007) (0.010) (0.010)

Contact with Clients (high) -0.120*** -0.031 -0.079*** -0.040* -0.080*** -0.060*** -0.035*** -0.012***
(0.013) (0.016) (0.012) (0.019) (0.006) (0.007) (0.003) (0.003)

Self-organization (high) 0.010 0.023 -0.016 0.022 0.017** 0.019** -0.006 -0.001
(0.014) (0.016) (0.017) (0.022) (0.005) (0.007) (0.010) (0.011)

Physical skills (high) 0.005 0.026 0.003 -0.015 -0.036*** -0.031*** 0.003 0.009
(0.013) (0.014) (0.013) (0.016) (0.005) (0.006) (0.008) (0.009)

Autonomy and Repet. 0.004 -0.009 0.012 -0.000 -0.007 -0.051*** 0.007 -0.004
(0.016) (0.021) (0.017) (0.022) (0.007) (0.009) (0.010) (0.011)

STEM skills (high) 0.039** 0.047* 0.051*** 0.007 0.065*** 0.069*** 0.055*** 0.055***
(0.015) (0.018) (0.014) (0.015) (0.005) (0.008) (0.010) (0.010)

Accounting skills (high) -0.024 -0.037* 0.005 0.023 -0.051*** -0.044*** -0.037*** -0.017
(0.014) (0.017) (0.013) (0.015) (0.006) (0.007) (0.010) (0.009)

ICT skills (high) 0.064*** 0.059*** 0.027 0.059*** 0.070*** 0.050*** 0.050*** 0.041***
(0.014) (0.018) (0.014) (0.016) (0.006) (0.008) (0.010) (0.009)

Readiness to learn (high) 0.002 0.007 0.010 0.034* 0.016** -0.006 -0.006 0.010
(0.013) (0.017) (0.015) (0.017) (0.005) (0.006) (0.009) (0.010)

Critical thinking tasks (high) 0.024 0.035* 0.000 -0.029 -0.006 -0.001 0.017 0.026**
(0.013) (0.017) (0.014) (0.017) (0.005) (0.006) (0.010) (0.010)

Medium-level education -0.015 0.020 -0.006 -0.060* 0.030*** 0.021* 0.013 0.014
(0.014) (0.019) (0.019) (0.025) (0.006) (0.009) (0.010) (0.011)

High-level education 0.057** 0.137*** 0.055* 0.064** 0.048*** 0.107*** 0.070*** 0.137***
(0.019) (0.022) (0.022) (0.023) (0.007) (0.010) (0.012) (0.013)

Young adults (18-25 years) -0.047** 0.022 -0.097*** -0.010 -0.063*** -0.030** -0.062*** -0.021
(0.017) (0.021) (0.017) (0.031) (0.007) (0.010) (0.011) (0.014)

Adults (25-40 years) -0.006 0.007 -0.043** -0.012 -0.002 0.003 -0.016 -0.010
(0.013) (0.016) (0.015) (0.017) (0.005) (0.007) (0.010) (0.010)

N 3885 2312 5162 3432 58719 41577 36559 26541

Cognitive skills 0.081 0.076 0.093 0.123 0.099 0.068 0.061 0.089
[0.000] [0.009] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

Non-Cognitive skills -0.072 0.031 -0.031 -0.025 -0.092 -0.075 -0.012 -0.011
[0.003] [0.283] [0.211] [0.374] [0.000] [0.000] [0.433] [0.511]

Robust standard errors are shown in parentheses. The coefficients are estimated using an expectation-maximization algorithm. We
regress the exposure to AI, as defined by Webb (2020), on skills, task measures, and other observable characteristics, creating a predicted
value of exposure to AI at the individual level. A generalized linear model is used, weighted by the product of individual weights
from the STEP and PIAAC surveys and a duplication weight, which accounts for multiple risks associated with the same worker. The
expectation-maximization algorithm proposed by Ibrahim (1990) is then applied. This algorithm adjusts the duplication weights iteratively
to maximize the likelihood of automation risk until the weights converge. The table presents the cumulative effects of cognitive skills
(STEM, accounting, ICT, and readiness-to-learn measures) and non-cognitive skills (management, client interaction, self-organization,
physical skills, and autonomy in repetitive tasks). P-values are displayed in square brackets. * 𝑝 < 0.05, ** 𝑝 < 0.01, *** 𝑝 < 0.001.
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Table 9: The Effects of AI Exposure on Employment and Wage Growth

(1) (2)
VARIABLES Δ ln(emp) Δ ln(wage)

Exposure to AI (Webb) 1.293*** -0.246
(0.440) (0.241)

Exposure to AI (Felten) 0.656** -0.026
(0.309) (0.183)

𝑟2 0.313 0.268
N 191 191
*** p<0.01, ** p<0.05, * p<0.1

6 Delta Employment and Wage Analysis
Our updated analysis now focuses on the effects of AI exposure, rather than traditional
automation risk measures, on employment and wage growth. This section presents
new baseline and quantile regression results, capturing how predicted exposure to AI—
measured by Webb (2020) and Felten et al. (2021) methodologies—affects labor market
outcomes across different segments of the employment and wage distributions.

6.1 Average Effects of AI Exposure

Table 9 presents baseline ordinary least squares estimates of the relationship between AI
exposure and subsequent changes in employment and wages. The results indicate that
higher exposure to AI in one unit of the index, as measured by Webb (2020)’s methodol-
ogy, is associated with a statistically significant 1.29% increase in employment growth.
Conversely, the effect on wage growth is negative (-0.246) but not statistically signifi-
cant. Similarly, when using Felten et al. (2021)’s measure of AI exposure, the coefficient
for employment growth is 0.66% and significant at the 5% level, while the wage effect
remains small and insignificant. These findings suggest that while AI exposure appears
to stimulate employment growth—possibly due to the creation of new tasks or job
reallocation—the impact on wages is less clear, hinting at complex dynamics between
technology adoption, job creation, and wage determination.
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6.2 Inequality Analysis Across Quintiles

Table 10 further examines the inequality implications of AI exposure by comparing its
effects across different wage quintiles, focusing on the change in employment and wages.
We estimate the heterogeneous effect in the bottom, top, and middle-wage quintiles
sorted according to the wage range.

In the measure provided by Webb (2020), employment changes in both the top and
bottom wage quintiles are positive. However, only the increase in employment within
the top quintile is statistically significant. In contrast, the employment changes in the
middle-wage quintile are negative and statistically significant. This suggests hetero-
geneity in how AI exposure impacts employment across different quintiles. However,
the wage differences across quintiles are all negative, although in the case of the top
quintile, it is not significant, implying a uniform trend in wage effects across a wide
range of wages and hence workers, although not big enough in some cases, so that these
effects are statistically significant.

In a similar vein, Felten et al. (2021)’s measure reveals that the impact on employ-
ment follows the same trend as Webb’s estimations, although none of the results are
statistically significant. However, notable differences are shown across income quintiles
regarding the effects of wages. Non-significant wage increases are observed at the lower
and middle segments of the income distribution, while a significant decrease in wages
for the top quintile. This finding aligns with Webb’s estimates and is statistically signif-
icant, suggesting that AI exposure may lead to unequal effects on wages across various
levels of wage range.

It is clear that when using Webb’s index, we predict an increase in wage inequality, while
the Felten index predicts a decrease. Regarding employment, both sets of estimations
show a polarization in employment growth by finding an increase in employment in the
high and bottom quintiles of the wage range, decreasing the size of the middle-income
class. One possible explanation for this result is that the increase in the number of
workers in the top quintile is not enough to increase the average wage of the top quintile,
which is possible if the share of employment in the bottom part of this top quintile
increases more than in the top part of the distribution. What is more important is
that part of the decrease in the size of the middle class moves upward in the income
distribution because their wage is growing although below the mean wage of the top
quintile; therefore, in the top quintile, the average wages are falling, as it is shown in
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Table 10: The Effects of Automation Risk Exposure on Employment and Wage Growth
- Inequality by Quintiles

(1) (2) (3) (4) (5) (6)
VARIABLES Δ ln(emp) Δ ln(emp) Δ ln(emp) Δ ln(wage) Δ ln(wage) Δ ln(wage)
Sample <P20 P40 to P60 >P80 <P20 P40 to P60 >P80

Exposure to AI (Webb) 1.616 -3.372** 6.623* -2.140* -0.936** -0.098
(1.101) (1.568) (3.436) (1.110) (0.449) (1.402)

r2 0.532 0.422 0.523 0.218 0.668 0.432
N 35 33 35 35 33 35
F-test of equality 2.09 1.42
Exposure to AI (Felten) 1.138 -1.439 2.852 0.831 0.032 -1.976*

(0.946) (0.851) (4.083) (1.039) (0.277) (1.046)
r2 0.522 0.419 0.447 0.144 0.640 0.498
N 35 33 35 35 33 35
F-test of equality 0.18 3.94**
*** p<0.01, ** p<0.05, * p<0.1

column 6 of Table 10.

7 Discussion on exposure to AI across genders, ed-
ucational level and age.

Our analysis of AI exposure across Latin American countries uncovers significant in-
sights into how gender, education, and age intersect with emerging AI exposure, con-
tributing to understanding the secular inequality patterns in LAC. The findings resonate
with and extend established economic theories of skill-biased technological change and
labor market polarization (e.g., Autor and Murnane, 2003; Acemoglu and Restrepo,
2011), while highlighting region-specific dynamics not fully captured in the developed
country-centric literature.

First, we find pronounced gender disparities in AI exposure. Consistent with previous
evidence on gendered labor market outcomes (e.g. Fortin et al., 2019), our results
show that, particularly in Latin America, women with high-level managerial and ICT
skills face increased AI exposure compared to men. This observation aligns with the
idea that occupations dominated by women, even at high skill levels, may involve
AI routinizable tasks (see also ?). The gender differences we document extend the

27



literature by suggesting that AI may not only affect employment but do so in a way
that exacerbates existing gender inequalities, especially where occupational segregation
persists.

Second, education emerges as a double-edged sword. Although traditional models ar-
gue that advanced education protects workers from automation risks (e.g., Autor and
Murnane, 2003; Egana-delSol et al., 2022a, our findings reveal reversed effects for AI in
Latin America: higher educational attainment correlates with greater exposure to AI.
Such outcomes have profound policy implications, as they imply that simply increasing
educational attainment may not suffice to shield workers against AI. This is mainly due
to the fact that AI is capable of performing more nonroutine cognitive tasks.

Third, the age-related analysis indicates that younger adults, particularly those aged
18–25, generally experience lower AI exposure compared to older cohorts in several
countries. This could reflect either a current mismatch between younger workers’ skills
and AI-susceptible tasks or differential sectoral employment patterns among youth.
However, as younger workers gain experience and move into roles traditionally occupied
by older cohorts, they may eventually face similar exposure, potentially reinforcing
intergenerational inequalities.

Finally, the intersection of gender, education, and age with AI exposure points to deep-
ening inequality in labor markets. Unlike the results found for both LAC and OECD
countries, where higher education and advanced skills often correlate with reduced au-
tomation risk, our results suggest that in Latin America, these factors might instead
concentrate AI exposure among groups traditionally seen as more resilient. This finding
is consistent with skill-biased technological change and emphasizes the importance of
localized policy responses. In particular, improving the quality of education, tailoring
reskilling programs to address skills gaps and gender-specific vulnerabilities, and design-
ing policies that account for age-related transitions in labor markets become paramount
to mitigating exacerbated inequalities.

Regarding inequality across the extremes of the income distribution, the results are
consistent with productivity increases, as employment increases at both extremes would
normally have a negative impact on wages – an effect that we find to be small or null.
This is, therefore, consistent with a significant productivity increase that cancels out
the negative impact of increases in employment on wages.
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Our results contribute to a growing body of literature that questions one-size-fits-all
assumptions about AI and its distributive effects (see also Goos et al., 2007; Autor
and Salomons, 2018). They highlight the need for targeted regional strategies consider-
ing the unique interaction between technology, demographic factors, and labor market
institutions.

As AI continues to evolve, policymakers must heed these insights to foster inclusive
growth and prevent widening inequality gaps. It is imperative to design education and
training programs that go beyond mere attainment levels to emphasize adaptability,
critical thinking, and non-routine skill development. Policymakers should invest in
continuous reskilling initiatives, targeted particularly toward women and older workers,
to mitigate the possible negative effects of AI exposure and to reap all possible benefits
of AI, as increases in productivity. Strengthening institutional support for lifelong
learning and fostering public-private partnerships can help bridge skill gaps and promote
smoother labour market transitions across the workers’ life cycle.

8 Concluding Remarks
Our analysis underscores the impact of AI exposure across genders, education, and
age demographics, with pronounced implications for AI exposure in Latin American
labor markets compared to OECD counterparts. The findings suggest that traditional
assumptions about the protective nature of advanced education regarding traditional
forms of automation do not uniformly apply to AI-driven automation. This reality calls
for tailored policy interventions that address these differentiated impacts.

As mentioned, our findings on inequality at the extremes of the income distribution
align with increases in productivity. We observe growth in employment at both ends
of the income spectrum, which typically would negatively affect wages; however, we
find this impact to be minimal or nonexistent. This suggests a substantial increase in
productivity that offsets any negative effects that higher employment levels might have
on wages.

Looking ahead, future research should explore longitudinal dynamics of AI exposure
and labour market outcomes to capture the longer-term effects of automation on ca-
reer trajectories and wage structures. Additionally, integrating firm-level AI adoption
metrics could refine our understanding of the mechanisms behind AI-induced labour
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market shifts, informing more precise and effective policy designs.

Declaration of generative AI and AI-assisted technologies in the writing
process

During the preparation of this work the authors used Grammarly in order to improve
the writing quality. After using this tool/service, the authors reviewed and edited the
content as needed and take full responsibility for the content of the publication.

30



References
Acemoglu, D., Restrepo, P., 2011. Skills, tasks and technologies: Implications for
employment and earnings, in: Handbook of Labor Economics. Elsevier. volume 4B.

Acemoglu, D., Restrepo, P., 2018. The race between man and machine: Implications of
technology for growth, factor shares, and employment. American Economic Review
108, 1488–1542.

Acemoglu, D., Restrepo, P., 2019. The Wrong Kind of AI? Artificial Intelligence and the
Future of Labor Demand , w25682URL: http://www.nber.org/papers/w25682.pdf,
doi:10.3386/w25682. issue: w25682.

Acemoglu, D., Restrepo, P., 2022. Tasks, Automation, and the Rise in U.S. Wage
Inequality. Econometrica 90, 1973–2016. URL: https://www.econometricsociety.org
/doi/10.3982/ECTA19815, doi:10.3982/ECTA19815.

Agrawal, A., Gans, J.S., Goldfarb, A., 2019. Exploring the impact of artificial in-
telligence: Prediction versus judgment. Information Economics and Policy 47, 1–6.
URL: https://www.sciencedirect.com/science/article/pii/S0167624518301136,
doi:https://doi.org/10.1016/j.infoecopol.2019.05.001. the Economics of
Artificial Intelligence and Machine Learning.

Angelova, V., Dobbie, W.S., Yang, C., 2023. Algorithmic Recommendations and Hu-
man Discretion. Working Paper 31747. National Bureau of Economic Research. URL:
http://www.nber.org/papers/w31747, doi:10.3386/w31747.

Arntz, M., G.S.G.T.L.F., Zierahn-Weilage, U., 2024. De-Routinization in the Fourth
Industrial Revolution - Firm-Level Evidence. Technical Report.

Arntz, M., Gregory, T., Zierahn, U., 2016. The risk of automation for jobs in oecd
countries .

Autor, D., Salomons, A., 2018. Is automation labor-displacing? productivity growth,
employment, and the labor share. Brookings Papers on Economic Activity Spring,
1–63.

Autor, D.H., 2015. Why are there still so many jobs? the history and future of workplace
automation. Journal of Economic Perspectives 29, 3–30. doi:10.1257/jep.29.3.3.

31

http://www.nber.org/papers/w25682.pdf
http://dx.doi.org/10.3386/w25682
https://www.econometricsociety.org/doi/10.3982/ECTA19815
https://www.econometricsociety.org/doi/10.3982/ECTA19815
http://dx.doi.org/10.3982/ECTA19815
https://www.sciencedirect.com/science/article/pii/S0167624518301136
http://dx.doi.org/https://doi.org/10.1016/j.infoecopol.2019.05.001
http://www.nber.org/papers/w31747
http://dx.doi.org/10.3386/w31747
http://dx.doi.org/10.1257/jep.29.3.3


Autor, D.H., 2019. Work of the past, work of the future. AEA Papers and Proceedings
109, 1–32. doi:10.1257/pandp.20191110.

Autor, D.H., Dorn, D., 2013. The growth of low-skill service jobs and the polarization
of the us labor market. American Economic Review 103, 1553–1597. doi:10.1257/
aer.103.5.1553.

Autor, D., L.F., Murnane, R., 2003. The skill content of recent technological change:
An empirical exploration. Quarterly Journal of Economics 118, 1279–1333.

Babina, T., Fedyk, A., He, A., Hodson, J., 2024. Artificial intelligence, firm growth,
and product innovation. Journal of Financial Economics 151, 103745. URL: https:
//www.sciencedirect.com/science/article/pii/S0304405X2300185X, doi:https:
//doi.org/10.1016/j.jfineco.2023.103745.

Benites, M., Parrado, E., 2024. Mirror, Mirror on the Wall: Which Jobs Will AI
Replace After All?: A New Index of Occupational Exposure. Technical Report. Inter-
American Development Bank. doi:10.18235/0013125.

Berg, J., G.P.B.D., 2023. Generative AI and Jobs: A Global Analysis of Potential
Effects on Job Quantity and Quality. Technical Report. International Labour Orga-
nization. doi:10.54394/FHEM8239.

Bone, M., González Ehlinger, E., Stephany, F., 2025. Skills or degree? the rise of
skill-based hiring for ai and green jobs. Technological Forecasting and Social Change
214, 124042. URL: https://www.sciencedirect.com/science/article/pii/S004016252
5000733, doi:https://doi.org/10.1016/j.techfore.2025.124042.

Bresnahan, T.F., Brynjolfsson, E., Hitt, L.M., 2002. Information technology, workplace
organization, and the demand for skilled labor: Firm-level evidence. The Quarterly
Journal of Economics 117, 339–376. URL: http://www.jstor.org/stable/2696490.

Brynjolfsson, E., Li, D., Raymond, L., 2025. Generative ai at work*. The Quarterly
Journal of Economics , qjae044doi:10.1093/qje/qjae044.

Brynjolfsson, E., Unger, G., 2023. The collective decisions we make today will determine
how AI affects productivity growth, income inequality, and industrial concentration
.

32

http://dx.doi.org/10.1257/pandp.20191110
http://dx.doi.org/10.1257/aer.103.5.1553
http://dx.doi.org/10.1257/aer.103.5.1553
https://www.sciencedirect.com/science/article/pii/S0304405X2300185X
https://www.sciencedirect.com/science/article/pii/S0304405X2300185X
http://dx.doi.org/https://doi.org/10.1016/j.jfineco.2023.103745
http://dx.doi.org/https://doi.org/10.1016/j.jfineco.2023.103745
http://dx.doi.org/10.18235/0013125
http://dx.doi.org/10.54394/FHEM8239
https://www.sciencedirect.com/science/article/pii/S0040162525000733
https://www.sciencedirect.com/science/article/pii/S0040162525000733
http://dx.doi.org/https://doi.org/10.1016/j.techfore.2025.124042
http://www.jstor.org/stable/2696490
http://dx.doi.org/10.1093/qje/qjae044


Camina, E., D.C.A., Torrent-Sellens, J., 2020. Automation technologies: Long-term
effects for spanish industrial firms. Technological Forecasting and Social Change 151,
119828.

Cao, Y., Hu, Y., Liu, Q., Lu, M., Shan, Y., 2023. Job creation or disruption? unraveling
the effects of smart city construction on corporate employment in china. Technological
Forecasting and Social Change 195, 122783.

Cazzaniga, M., Pizzinelli, C., Li, L., Panton, A., Tavares, M.M., 2024. Exposure to
Artificial Intelligence and Occupational Mobility: A Cross-Country Analysis. IMF
Working Papers 2024. URL: https://elibrary.imf.org/openurl?genre=journal&issn=
1018-5941&volume=2024&issue=116&cid=549989-com-dsp-crossref, doi:10.5089/
9798400278631.001. issue: 116.

Chui, M., Hall, B., Singla, A., Sukharevsky, A., 2021. Global Survey: The State of AI
in 2021. Technical Report. McKinsey & Company.

Dixon, J., Hong, B., Wu, L., 2021. The robot revolution: Managerial and em-
ployment consequences for firms. Management Science 67, 5586–5605. URL:
https://doi.org/10.1287/mnsc.2020.3812, doi:10.1287/mnsc.2020.3812,
arXiv:https://doi.org/10.1287/mnsc.2020.3812.

Doorley, K., Gromadzki, J., Lewandowski, P., Tuda, D., Van Kerm, P., 2023. Au-
tomation and Income Inequality in Europe. IZA Discussion Paper 16499. Institute
of Labor Economics (IZA).

Egana-delSol, P., 2020. The Future of Work in Developing Economies: What can we
learn from the Global South? GLO Discussion Paper, No. 483 .

Egana-delSol, P., Bustelo, M., Ripani, L., Soler, N., Viollaz, M., 2022a. Automation
in Latin America: Are Women at Higher Risk of Losing Their Jobs? Technological
Forecasting and Social Change 175, 121333. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0040162521007642, doi:10.1016/j.techfore.2021.121333.

Egana-delSol, P., Cruz, G., Micco, A., 2022b. Covid-19 and automation in a developing
economy: Evidence from chile. Technological Forecasting and Social Change 176,
121373. doi:10.1016/j.techfore.2021.121373.

33

https://elibrary.imf.org/openurl?genre=journal&issn=1018-5941&volume=2024&issue=116&cid=549989-com-dsp-crossref
https://elibrary.imf.org/openurl?genre=journal&issn=1018-5941&volume=2024&issue=116&cid=549989-com-dsp-crossref
http://dx.doi.org/10.5089/9798400278631.001
http://dx.doi.org/10.5089/9798400278631.001
https://doi.org/10.1287/mnsc.2020.3812
http://dx.doi.org/10.1287/mnsc.2020.3812
http://arxiv.org/abs/https://doi.org/10.1287/mnsc.2020.3812
https://linkinghub.elsevier.com/retrieve/pii/S0040162521007642
https://linkinghub.elsevier.com/retrieve/pii/S0040162521007642
http://dx.doi.org/10.1016/j.techfore.2021.121333
http://dx.doi.org/10.1016/j.techfore.2021.121373


Felten, E., Raj, M., Seamans, R., 2021. Occupational, industry, and geographic ex-
posure to artificial intelligence: A novel dataset and its potential uses. Strategic
Management Journal 42, 2195–2217. URL: https://onlinelibrary.wiley.com/doi/10.1
002/smj.3286, doi:10.1002/smj.3286.

Filippi, E., Bannò, M., Trento, S., 2023. Automation technologies and their impact on
employment: A review, synthesis and future research agenda. Technological Fore-
casting and Social Change 191, 122448. URL: https://www.sciencedirect.com/scie
nce/article/pii/S0040162523001336, doi:https://doi.org/10.1016/j.techfore.2
023.122448.

Fortin, N.M., MacKay, H.L., Sadun, R., 2019. Gender and the automation of occupa-
tions. American Economic Review 109, 2078–2110.

Frey, C.B., Osborne, M.A., 2013. The future of employment: How susceptible are jobs
to computerization? URL: https://www.oxfordmartin.ox.ac.uk/downloads/academ
ic/future-of-employment.pdf.

Frey, C.B., Osborne, M.A., 2017. The future of employment: How susceptible are
jobs to computerisation? Technological Forecasting and Social Change 114, 254–
280. URL: https://linkinghub.elsevier.com/retrieve/pii/S0040162516302244,
doi:10.1016/j.techfore.2016.08.019.

Gmyrek, P., Winkler, H., Garganta, S., 2024. Buffer or Bottleneck?: Employment
Exposure to Generative AI and the Digital Divide in Latin America. Technical Report.
World Bank, International Labour Organization, Research Department. doi:10.543
94/TFZY7681.

Goos, M., Manning, A., Salomons, A., 2007. Job polarisation in europe. American
Economic Review 99, 58–63.

Heluo, Y., Fabel, O., 2024. Job computerization, occupational employment and wages:
A comparative study of the united states, germany, and japan. Technological Fore-
casting and Social Change 209, 123772.

Ibrahim, J.G., 1990. Incomplete Data in Generalized Linear Models. Journal of the
American Statistical Association 85, 765–769. URL: http://www.tandfonline.com/
doi/abs/10.1080/01621459.1990.10474938, doi:10.1080/01621459.1990.10474938.

34

https://onlinelibrary.wiley.com/doi/10.1002/smj.3286
https://onlinelibrary.wiley.com/doi/10.1002/smj.3286
http://dx.doi.org/10.1002/smj.3286
https://www.sciencedirect.com/science/article/pii/S0040162523001336
https://www.sciencedirect.com/science/article/pii/S0040162523001336
http://dx.doi.org/https://doi.org/10.1016/j.techfore.2023.122448
http://dx.doi.org/https://doi.org/10.1016/j.techfore.2023.122448
https://www.oxfordmartin.ox.ac.uk/downloads/academic/future-of-employment.pdf
https://www.oxfordmartin.ox.ac.uk/downloads/academic/future-of-employment.pdf
https://linkinghub.elsevier.com/retrieve/pii/S0040162516302244
http://dx.doi.org/10.1016/j.techfore.2016.08.019
http://dx.doi.org/10.54394/TFZY7681
http://dx.doi.org/10.54394/TFZY7681
http://www.tandfonline.com/doi/abs/10.1080/01621459.1990.10474938
http://www.tandfonline.com/doi/abs/10.1080/01621459.1990.10474938
http://dx.doi.org/10.1080/01621459.1990.10474938


Kanazawa, K., Kawaguchi, D., Shigeoka, H., Watanabe, Y., 2022. AI, Skill, and Produc-
tivity: The Case of Taxi Drivers. Working Paper 30612. National Bureau of Economic
Research. URL: http://www.nber.org/papers/w30612, doi:10.3386/w30612.

Lassébie, J., Quintini, G., 2022. What skills and abilities can automation technologies
replicate and what does it mean for workers? New evidence .

Maloney, W.F., Molina, C., 2016. Are automation and trade polarizing developing
country labor markets, too? Policy Research Working Paper No. 7922 .

Muro, M., Maxim, R., Whiton, J., 2019. Automation and Artificial Intelligence: How
Machines Are Affecting People and Places. Technical Report. Metropolitan Policy
Program, Brookings Institution.

Nations, U., 2024. Mind the AI Divide: Shaping a Global Perspective on the Future of
Work. Technical Report. United Nations. doi:10.18356/9789211066524.

Nedelkoska, L., Quintini, G., 2018. Automation, skills use and training. OECD Social,
Employment and Migration Working Papers 202. URL: https://www.oecd-ilibrary.
org/employment/automation-skills-use-and-training_2e2f4eea-en, doi:10.1787/2e
2f4eea-en. issue: 202 Series: OECD Social, Employment and Migration Working
Papers Volume: 202.

Taniguchi, H., Yamada, K., 2022. Ict capital–skill complementarity and wage inequality:
Evidence from oecd countries. Labour Economics 76, 102151. URL: https://www.sc
iencedirect.com/science/article/pii/S0927537122000446, doi:https://doi.org/10
.1016/j.labeco.2022.102151.

Vaccaro, M., Almaatouq, A., Malone, T., 2024. When combinations of humans and
AI are useful: A systematic review and meta-analysis. Nature Human Behaviour 8,
2293–2303. URL: https://doi.org/10.1038/s41562-024-02024-1, doi:10.1038/s415
62-024-02024-1.

Webb, M., 2020. The Impact of Artificial Intelligence on the Labor Market .

World Bank, ., 2024. Digital Progress and Trends Report 2023. Technical Report.
World Bank.

9 Graphs

35

http://www.nber.org/papers/w30612
http://dx.doi.org/10.3386/w30612
http://dx.doi.org/10.18356/9789211066524
https://www.oecd-ilibrary.org/employment/automation-skills-use-and-training_2e2f4eea-en
https://www.oecd-ilibrary.org/employment/automation-skills-use-and-training_2e2f4eea-en
http://dx.doi.org/10.1787/2e2f4eea-en
http://dx.doi.org/10.1787/2e2f4eea-en
https://www.sciencedirect.com/science/article/pii/S0927537122000446
https://www.sciencedirect.com/science/article/pii/S0927537122000446
http://dx.doi.org/https://doi.org/10.1016/j.labeco.2022.102151
http://dx.doi.org/https://doi.org/10.1016/j.labeco.2022.102151
https://doi.org/10.1038/s41562-024-02024-1
http://dx.doi.org/10.1038/s41562-024-02024-1
http://dx.doi.org/10.1038/s41562-024-02024-1


Figure 1: Bolivia

(a) Top 5 employees (b) Top 5 exposure to AI predicted Felten

(c) Top 5 exposure to AI predicted Webb
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Figure 2: Chile

(a) Top 5 employees (b) Top 5 exposure to AI predicted Felten

(c) Top 5 exposure to AI predicted Webb
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Figure 3: Ecuador

(a) Top 5 employees (b) Top 5 exposure to AI predicted Felten

(c) Top 5 exposure to AI predicted Webb
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Figure 4: Peru

(a) Top 5 employees (b) Top 5 exposure to AI predicted Felten

(c) Top 5 exposure to AI predicted Webb
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Figure 5: Mexico

(a) Top 5 employees (b) Top 5 exposure to AI predicted Felten

(c) Top 5 exposure to AI predicted Webb
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